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energies and configurational interactions in alloys: cluster 
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systems 

S~ V Beiden, G D Samolyuk, V G Vaks  and N E Zein 
Russian Research Cenve 'Kurchatov Institute', Mosmw 123182, Russia 

Received 2 March 1994 

Abstract. We present self-consistent -ASA duster calculations of the solution energy Q and 
the nearest- and next-nearest-neighbour configurational intenctions, VI and Vz, for the dilute 
BCC Ti-,V, and RC Nij-xAlz alloys. The lattice relaxation effects (ME) are described with a 
proper choice of atomic volumes for the impurity and its neighbours, which are found employing 
the conventional phenomenological estimates for atomic displacemen& near an impurity. For 
the Ti-V system LXE are found to be important, while the charge uansfer effects (m) are small. 
The results of our calculations for this system seem to indicate that the phenomenological 
estimates overestimate LRE conhibutions to Q and Vi by a factor of about two. We also present 
phenomenological estimates of LRE wntributions to Q for impurities in 24 cubic host metals. 
For the Ni-AI system ME are found to be small while CIE are significant, and taking them inb 
account in the cluster calculations of Q and V; seems to noticeably improve their accuracy as 
compared with singlesite approaches. 

1. Introduction 

First-principles approaches to calculations of alloy phase diagrams and thermodynamics 
have recently received much attention [I-111. These approaches are usually formulated in 
terms of an Ising-like Hamiltonian, which for the binary alloy A-B has the form 

Here the operator ni is unity when the site i is occupied by the atom A and ni = 0 otherwise, 
while the coefficients V, with n > 2 are called the configurational interactions. The quantity 
& for dilute alloys (x  = (n ; )  -+ 0) is equal to the mixing (solution) energy per atom, 12. 

The methods used for the first-principles~ calculations of V usually employ either 
various versions of the coherent-potential approximation (CPA) for the electronic structure 
of disordered alloys [l-31, or approaches of the Connolly-Williams (CW) type [5-71. The 
reference system for the CPA-based calculations is a disordered alloy, while in cw-type 
approaches the configurational interactions are determined from their fit to the calculated 
energy values for several ordered intermetallic compounds. Therefore, from general 
considerations one may expect that for disordered alloys the CPA-based calculations of V 
can be more accurate than those using cw-type approaches. 
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However, a number of important effects are usually neglected in the currently used 
single-site (ss) versions of CPA-based calculations of V .  Among them, of particular 
importance seem to be the local lattice distortion, or ‘lattice relaxation’ effects (LRE), and 
the charge transfer effects (cm) between alloy constituents. The importance of both of 
these effects for the configurational interactions and phase stability of alloys was stressed 
and illustrated, in particular, in a recent review [7]. However, in the usual SS CPA these 
effects are disregarded. Other approximations, such as the ‘tight-binding’ approximation 
(TBA), are also often used in the currently used calculations of V (for example, in [2,4, SI), 
while the relevant errors are usually not examined. 

In the most recent versions of the cw approach [5-71 the electronic structure and energies 
Ej for the ordered intermetallic compounds are calculated with a full allowance for both 
CTE and LRE (compatible with the crystal symmet-y). However, the main assumption of this 
approach, that the alloy energy for all the concentrations and ordering types, including the 
disordered phase, can be interpolated by Hamiltonian (1) with the same values of interactions 
V (being, therefore, independent of both the concentration and the state of alloy order) raises 
questions about the convergence of such an interpolation with respect to the number N of 
non-zero interactions V retained. These interactions are determined in 15-71 from their fit 
to the calculated Ej for N - 10 intermetallic compounds, and the agreement of the obtained 
interpolation (1) with the Ei values calculated for several ‘extra’ N‘ - N compounds (or 
the RMS error in the Ei fit for some N‘ z N intermetallics) is taken as a criterion for the 
convergence. However, the disordered state differs from the ordered ones in a number of 
qualitative aspects, in particular, in the character of its electronic structure. Therefore, the 
above criterion may be not quite informative for it, and the actual convergence of the cw 
interpolation (1) for the disordered phase can be worse than that for the ordered ones. Let 
us note in this connection that the phase diagrams calculated in [5,6] for the Ni~,AI, and 
A I I - ~ T I ~  alloys, respectively, seem to disagree noticeably with the observed ones just at 
small x ,  i.e. in the description of phase equilibria with the disordered phase. Therefore, the 
development of direct methods for consistent calculations of configurational interactions in 
the disordered phase seems to remain a problem in alloy theory. 

Adequate methods to treat CTE in the particular case of dilute alloys were developed by 
Dederichs and co-workers [9-111. They showed that a self-consistent treatment of clusters 
including impurities with all their nearest neighbours enables us to properly allow for CTE 
in the calculations of V .  In the cases when the concentration interval for stability of .. 
the disordered phase is not broad (which is characteristic for many intermetallic systems), 
this relatively simple ‘several-impurity-cluster in host metal‘ approach can provide main 
interactions V in the whole range of practical interest. Dederichs and co-workers also 
found that the conventional single-site approximation (SSA) (corresponding, in particular, to 
the usual CPA) can be rather misleading in estimates of V, when m are large. However, 
these authors did not consider the LRE, although the possible importance of these effects for 
alloys with a significant mismatch of atomic sizes was repeatedly mentioned in [9-111. 

A simple estimate for the L E  (or ‘deformational’) contributions Vd to V in dilute 
alloys was suggested by JShachaturyan and by Cook and de Fontaine [12-141. They used 
a phenomenological expression for Kanzaki forces F(R) determining the lattice distortion 
energy at a distance R from the impurity. Supposing these forces to be of short range, i.e. 
neglecting F(R) values for R exceeding the nearest-neighbour distance Rn0, they expressed 
the single remaining parameter F(R,) in terms of experimentally measurable quantities: 
the concentrational dilation coefficient and the phonon spectrum of the host metal. Two 
of the authors [15] recently applied these formulae to estimate resulting deformational 
interactions V&) for actual substitutional alloys. We found that in many alloys these 
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terms are rather significant and can even exceed the other 'electronic' contributions to V .  
However, microscopic estimates of the quantities F(R) are still not available, thus the 
accuracy of these phenomenological estimates neglecting not-nearest-neighbour Kanzaki 
forces is, generally, unclear. Therefore, the direct microscopic estimates of deformational 
contributions V, seem to be desirable. 

In this paper we consider the lattice relaxation and charge transfer effects on Q and 
V, values in the dilute BCC Til-,V, and FCC Nil,AIx alloys. These systems were chosen 
for three reasons. Firstly, the quantities Q and V, for them are discussed in a number of 
theoretical and experimental works [2-5,16411, which results can be compared with ours. 
Secondly, the above-mentioned estimate 1151 has shown that LRE in the BCC Til,V, alloys 
are rather large; thus the microscopic treatment of Vd for this system enables us to appreciate 
the accuracy of the phenomenological estimates of Vd. Thirdly, a comparison of present 
self-consistent cluster calculations of V with approximate versions employed in the literature 
(SSA, TBA, the embedded cluster method (ECM) using the 'frozen' SSA electronic potentials 
within clusters [l]) may illustrate a scale of errors brought about by these approximations 
in resulting V for the typical alloy systems considered. 

To treat impurity problems we use the linear muffin-tin orbital and atomic sphere 
approximations (LMTO-ASA) in the Green function method, as suggested by Gunnarsson, 
Jepsen and Andersen (GJA) [22], being combined with the cluster methods developed 
by Dederichs and co-workers [%Ill. Employing ASA implies disregarding the non- 
sphericity of both the electronic potential and charge distribution, which can lead to some 
errors, particularly in calculations of the solution energy Q [lo]. On the other hand, the 
transparency and flexibility of the ASA also enables us to approximately treat LRE (which 
seems to be difficult for other methods), as well as to simply analyse the importance of 
different contributions to V and errors brought about by various approximations. 

In section 2 we describe self-consistent cluster methods used in our treatment of single- 
and two-impurity problems within the LMTO-ASA framework. The results of their application 
to the dilute BCC n-V alloys are discussed in section 3, and those for the FCC Ni-AI alloys 
in section 4. The main conclusions are summarized in section 5. Some results of this work 
were reported earlier in [23,24]. 

2. Method and approximations of calculations 

As mentioned, we use the LMTC-ASA method as described by CIA [ZZ] and the cluster 
approach similar to that of Dederichs and co-workers [9-11]. In accordance with [9-11], 
in our calculations of electronic structure and energies for both one- and two-impurity 
problems we self-consistently treat atomic clusters including impurities together with all 
their nearest-neighbours. For the singleimpurity problem (in particular, in calculations of 
the solution energy Q) it implies a treatment of clusters including 9 and 13 atoms for the 
BCC and FCC lattice, respectively. The two-impurity clusters needed for calculations of pair 
configurational interactions VI or Vz between nearest- or next-nearest neighbours are shown 
in figure 1. They include 16 or 14 atoms for the BCC lattice, and 20 or 22 atoms for the FCC 
one. For comparison, we also calculated Q and using the SSA and ECM [l], respectively, 
which corresponds to the conventional ss CPA for the dilute alloys under consideration. 

We proceed from the conventional local-density (LD) and AS approximations. Then the 
energy E of valence electrons is given by formula (2.59) of GJA: 
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I D 1  

Figure 1. Schematic 
secand-pair configurati 

I d )  

presentation of atomic clusters used in the calculations of first- an 
al interactions, h and 6. (a) BCC lattice, VI. ( 6 )  BCC lattice, Vz. (c 

m lattice, VI. (2)  RC l a c e ,  Vz. The clusters in (a), (b), (c) and (d)  include 16, 14. 20, and 
22 atoms, respectively. The symbol i mb the impurity mm; the numben 1.2, 3 and 4 mark 
the non-eqlrivalent host atom in the cluster. 

(3) 

Here we use the notation of GJA: R = R indicates the position of the atomic cell (being 
approximated by a sphere in ASA), and the lower index R on the integral sign means that the 
integral is in the AS at R; q R  is the total charge of the cell R (while its nuclei charge is ZR);  
n,c.R is ?t,,,R + n c . R  where nv and n, is the density of the valence and core electrons; exc 
and pnc are the exchange-correlation energy and potential in the LDA; p = EF is the Fermi 
energy, and N ( E )  is the density of states for the valence electrons. The terms Eint and 
the 'Coulomb' term, Ec. correspond to the first, second and third term in (Z), respectively, 
while the 'band' or 'doublecounted' contributions, Eb or Edc, correspond to the first or 
second term in the RHS of (3). Following GJA, we employ the frozen-core approximation 
and omit the core-electron contributions to the energy. 
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The solution energy Q for a single impurity is determined as the relevant change in 
energy 

Q = E(Nh f li) - Eh(Nh) -&(I;). (4) 

Here the subscripts h or i correspond to host or impurity atoms, E(Nh+li) is the alloy energy 
for the macroscopically large number Nh of host atoms and single impurity, while 
and Ei(li) are energies of the same number of atoms in pure components. Similarly, the 
pair configurational interaction V ( R )  in thedilute alloy considered is the difference between 
the energy ER of two impurities with a relative distance R and two isolated impurities in 
the host metak 

v(R) = E R ( N h  + 2i) - Eh(Nh) - Ei(2i) - 2e = ER(Nh + 2i) - 2E(Nh + l i )  f Eh(Nh). 

(5) 

Equations (3)<5) show that both Q and V ( R )  can be written as the sum of differences 
AEm for various contributions to E: 

{Q, V ( R ) )  = AEb + AEd, + AEc (6) 

where A& are determined by (4) or (5). 
Equations (4) and (5) show, in particular, that V ( R )  corresponds to the ‘configurational‘ 

changes in E due to the relative displacements of impurities in the host matrix, while Q 
corresponds to the more complicated solution process. Thus one may expect that V ( R )  
values are less sensitive to various approximations of calculations than Q values. The 
results below (as well as those of [21) seem to support these expectations. 

In the LMTO-ASA method of  GJA the Hamiltonian matrix H = H R L , R 8 ~ ,  (where L = 1 ,  m 
are angular momentum variables) has the two-centre form 

H = C + A”’S(1 - yS)”A”’. (7) 

Here S is the matrix of canonical structure constants, while C, A and y are the potential 
parameter matrices, being diagonal in R and L: (C, A, y )  = (CR,, A R ~ ,  Y R I ) ~ R R ~ L L , .  The 
potential function P ( E )  = PRI (e)  (which characterizes electron scattering at the MT potential) 
is a fractional linear function of energy E and the potential pammeters: 

E - C~ 
P(E) = 

Y(E - C)-4A/si  

where sR is the MT (atomic) sphere radius. If one neglects differences in ARL and y ~ ,  
values for different atoms and sites R, the,Hamiltonian (7) takes a tight-binding form with 
the ‘diagonal‘ .disorder matrix AC = (CRI - Ch.,)S~p&p where Ch.1 correspond to the 
pure host metal. This approximation will be referred to as the ‘diagonal-disorder W O ’  
(DD-LMTO) approximation; it is a self-consistent version of TEA. Below we show that this 
tight-binding type of approach may yield significant errors, particularly for the solution 
energy Q. 

The self-consistent procedure used for the determination of wavefunctions @Rl(r, E )  

and the potential parameters C, A, y (which are expressed via ~ R I ( S R , E )  and 
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a@R&R, € ) / a €  [22]) is similar to that described in [9-11,221. The Green function matrix 
g(6) is determined by the Dyson equation 

S V Beiden et a1 

g(E) = (1 + goAP)-'go =go +goTgo.  (9) 

Here go(€) = [P0(6) - SI-', A P  = P(6) - Po(€), and Po(€) correspond to the pure host 
metal. The path operator T can be expressed in terms of the single-site scattering matrix 
t R  AP,(l - g!RApR)-' as 

where for brevity we omit the angular momentum indices. In practice, the expansion (10) 
in powers of got converges rapidly (which was noted, in particular, in [I]). Thus in our 
calculations we retained in T only the first three terms written explicitly in (10). Testing DD- 
LMTU calculations with the exact solution of matrix equation (9) for one- and two-impurity 
clusters of AI in Ni (including 13 and 20 atoms, respectively) showed that errors in Q and 
V values due to this truncation of series (IO) do not exceed a few per cent. 

As mentioned in [lo], to find the band energy term AEb in (4H6) it is convenient to use 
the Lloyd relation between AEb and AP. To apply it to our problem, we note the general 
relation between the band energy Eb and the Green function g (see, for example, [1,22]): 

& = /LNe + - de h Tr In g(E). (11) 
37 S@ 

Therefore, the change AEb due to the substitution of n host atoms by the impurity atoms 
can be written as 

AEb=Eb(NhCnj)-Eb(Nh+nh) = , L L t I ( . ? T - Z z ) - -  d€ImTrIn(l-gOAP). (12) n J @  
Here zr and zhy is the number of valence electrons for the impurity and host atom, 
respectively, and we also used (9) for g. Equation (1 1) enables us to directly find A &  for 
both the o n e  and two-impurity clusters. 

The contributions AE,, in (6) and (3) are determined by the electron densities nv,R and 
n,J, while AE, in the ASA depend only on cell charges q~ = 1, nv,~(r)d3r - z: where 
01 = i  or h. 

For the core electron density RC.8 we used the frozen-core approximation and OUT LDA 
calculations for the isolated atoms. The valence electron density n",R is related to the Green 
function g as 

where is the radial Schrodinger equation solution for the cell B in the self-consistent 
potential vR(?') = SEjnt/Gnv,~ with Ej, €-om (2). These equations were solved with the 
LMTO-ASA method of CIA using the itergive procedure similar to that employed in [9-111. 
The iterations were made either for 4Rf(r) = @ R  or nv&) = ItR with following expressions 
for @R or nR at the mth iteration step: 

n(m) - - (1 - 01)np-~)  + anT-" (14) qy = (1 - (nr-1) + a@?+ 
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where CY is the damping factor. Similarly to [9-111, the optimal values of 01 were found to 
be CY Y 0.99, and the convergence was achieved after 80-100 iteration steps. Integrals over 
E in (llH13) were taken in the complex plane E, shifting the integration contour to the 
upper half-plane by Ae = iH, as described in [9-111. We used H N 0.06 au and NH Y 400 
inteBation points at the contour. 

The important parameters in the LIVIX)-ASA applications to impurity problems are the 
AS radii, that for the impurity, si, and those for its host neighbours, s,. Neglecting LRE 
corresponds to employing for both the si and s, the pure host value SL, = (3ah/4n)’/3, 
where a h  is the volume per host atom. However, due to the LRE, actual impurity neighbour 
positions differ from those for the pure host by the local distortions UR. Values of U R  
can be estimated with the use of the mentioned phenomenological approach [14], which 
enables us to express UR via the observable concentrational dilation coefficient and the host 
phonon spectrum. Using these U R  we can find volumes QR of ‘distorted’ WignerSeitz 
(WS) cells, the impurity one, Qi, and those of its neighbours, a., as well as the radii of 
these distorted WS cells: SR = (3s2R/4n)”3. In the spirit of the LMTCbASA approach, it 
seems natural for impurity problems to put S R  equal to the ws radius for this distorted ws 
cell: SR = (3nR/4ir)’/’. Below we adopt this definition of SR to approximately treat LRE 
in our LMTC-ASA cluster approach. This treatment neglects LRE on the structural constants 
S in the Hamiltonian (1). However, it seems plausible to suppose that these dimensionless 
geometrical constants (which are not changed under homogeneous dilations of the crystal 
lattice) are less sensitive to the local dilations near the impurity than the potential parameters, 
which are determined, in particular, by the electron wavefunction normalization within Q R .  

Generally, in calculations of Q and V(R) we can take into account the LRE in two ways, 
making calculations either for the relaxed lattice with Q R  = SF:, or for the undistorted (and 
thus locally stressed) lattice with S ~ R  = a h .  In the first method the actual quantities Q and 
V are immediately given by (6). In the second approach we should add to expressions (6) 
the lattice relaxation contributions, Qd and vd: 

IQ, V(R)l= AEb + AEdc 4- AEc 4- {Qd, vd(R)l. (15) 

If all terms entering (6) and (15) (i.e. the deformational contributions Qd. V, and the 
others, the ‘electronic’ contributions Qe and V,, at both QR = Slf and Q R  = aj,) are 
calculated exactly, the resulting total Q and V ( R )  values for these two approaches must 
coincide. Therefore, a comparison of resulting Q and V(R) values for these two sets of 
calculations can provide an opportunity to appreciate the accuracy of the adopted treatment 
of m, in particular, of the above-mentioned phenomenological estimates of Qd and V, 
neglecting not-nearest-neighbour Kanzaki forces. 

3. Results of calculations for BCC Ti-,V, aUoys 

The results of our calculations of Q and Vj = V ( R i )  for the dilute BCC Til,V, system 
are presented in tables 1 and 2. The symbols cc, SSA and ECM in these tables mean, 
respectively, the cluster calculation with the self-consistent treatment of electronic structure 
for all cluster atoms; the abovementioned single-site approximation for a single impurity 
when only this impurity atom @ut not its neighbours) is treated self-consistently, and the 
embedded cluster method for calculations of interactions V(R) when in the sum (6) we 
retain only the band term AEb calculated using the ‘frozen’ SSA electronic potentials. As 
mentioned, for the dilute alloys under consideration the SSA or ECM correspond to the usual 

~ 
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Table 1. Characteristics of a single V impurity in ECC i3. 

Method nn Charges q (au) Contributions to Q (ev) Total Q (eV) 

V Ti Cluster AEb AEL 8AEE AEc Calc. Exp. 

LMTU cc 0.073 -0.011 -0.014 -2.82 3.21 -0.27 -0.012 0.12 0.12 [I61 
$2;' 0.071 -0.009 -0.002 -2.46 3.21 -0.61 -0.012 0.13 0.19 [I71 
nh 0.181 -0.m -0.016 -1.83 3.17 -1.02 -0.118 0.20 

SSA Qq 0.04 - 0.04 -2.86 2.99 - - 0.13 
Oh 0.10 - 0.10 -2.24 2.60 - - 0.36 

DDW cc a;' 0.06 -0.009 -9,008 -3.02 2.81 -0.43 -0.026 -0.67 
Qh 022 -0,029 -0.011 -2.55 2.40 -2.02 -0.167 -2.34 

SSA s2F1 0.05 - 0.05 ~-3.27 2.43 - - -0.85 
ah 0.13 - 0.13 -3.63 1.63 - - - -2.00 

Table 2. Atomic charges and interactions V# = V(&) for clusten including two V atoms in 
BCC Ti. 

Method R;= RYv Qn charges q (au) Conhib. to I$ (meV) Total 

V lil Ti2 l i g  Cluster Vb Vd, Vc cc ECM 

LMm, cc (1,IJ) Cl;' 0.05 -0.01 0.00 -0.01 -0101 " -493 490 9.5 6.6 ~ 9.9 
ah 0.16 -0.03 -0.02 -0.02 -0.01 -716 655 74 13.4 10.3 

(2,O.O) n;' 0.04 -0.01 -0.01 - 0.00 -99 106 -24 -16.9 13.3 
S2h 0.17 -0.05 -0.02 - -0.02 -53 272 -214 5.0 8.7 

D O - W ,  cc (1,lJ) Og' 0.05 -0.01 0.00 -0.01 -0.01 -743 725 I2 5.3 7.8 

, ,  

(2.0.0) a;' 0.05 -0.01 -0.01 - -0.01 -200 353 4 3  -8.2 20.9 

CPA approach for calculations of the quantities Q or V. The symbols Til, Ti? or Tis in 
table 2 correspond to different types of Ti atoms in clusters, indicated in figure 1 by the 
symbols 1, 2 or 3. 

In accordance with the two above-mentioned ways of treating L E ,  we performed several 
sets of calculations, those for the relaxed lattice with Q R  = QF1, and those for the undistorted 
lattice with Q R  = Qh. To appreciate the significance of LRE for the impurity and its 
neighbours separately, we also made calculations allowing for relaxation of cell volume 
only for the impurity but not for its neighbours, i.e. putting Qv = QFI, Q. = ah. The 
results of the latter calculation (marked with Q R  = a?) are presented in the second line of 
table 1. In the SSA or E M ,  perturbations of neighbours by the impurity are disregarded, thus 
LRE in these approaches are allowed only for the impurity atom: QF1 = QT. In the case of 
BCC Ti, = Q, = 122.9 (in ax., here and below), while for the pure BCC vanadium metal 
Q$ = 93.7 [15]. Local distortions U R  needed to find values of Q:' were estimated by the 
Khachaturyan method 114,151, using the Vegard law (which holds well for these alloys [ Z ] ) .  
It yields Q:' = 114.6 for the V impurity and Q," = Qyl = 121.7 for its nearest Ti atoms. 
we see that the local dilation (compression) A! = (aie' - Qh)/Qh Y -0.1 is large here, 
thus LRE should be significant. In calculations for the unrelaxed lattice (with QR = Qh) the 
'total' Q or V;: values presented in tables 1 and 2 do not include deformational terms Qd or 
Vp corresponding to the last term of (15). Estimating these terms with the Khachaturyan 
method [14,15], we obtain (in meV): Q ~ K  = -160, V y  = -16, and V,"." = -40. 

To appreciate the accuracy of tight-binding-type approaches for the problems under 
consideration, in tables 1 and 2 we also present results of the above mentioned DD- 
LMTO approach. It corresponds to the self-consistent treatment only of terms CRI 



Lattice relaration and charge transfer effects in alloys 8495 

(determining 'centreof-band' positions [22]) in Hamiltonian (7). while parameters ARI 
and YRf (determining the band's width and shape) for impurity and host atoms are supposed 
to be the same. The actual fully self-consistent values of parameters Cf, Af and y~ are 
presented in table 3. Differences of A1 and between host and impurity atoms in this 
table may seem to be small enough to justify neglecting them, i.e. employing the D D - L m  
approach. However, in calculations of the solution energy Q ,this approximation leads to 
large errors (see table 1 and the discussion below). 

Table 3. LMIO parameters for host and impurity atoms in alloy systems considered 

Ci (eV) AI (eV) n 
1 0 1 2 0 I 2 0 1 2 

BCC li -2.58 8.36 0.63 2.01 1.86 0.27 0.43 0.12 0.012 
V i n  li, i2.q = 0;' -2.99 8.22 -0.17 2.04 1.89 0.22 0.43 '0.12 0.007 
V i n T i , Q ~ = n ,  -3.85 6.81 -1.45 190 1.77 0.19 0.43 0.12 0.007 

FCC Ni -4.30 9.77 -2.44 2.52 2.20 0.16 0.43 0.11 0.002 
AI in Ni, Q R  = Q;' -8.14 4 .19~  20.9 2.26 1.94 1.91 0.41 0.10 0.055 

Let us first discuss the charge transfer q values for the relaxed and unrelaxed lattice. 
Tables 1 and 2 show that the relaxed WignerSeitz cells are almost neutral (which may be 
taken as a qualitative support for the estimates used of local distortions UR). However, for 
the unrelaxed impurity cell the charge q; is noticeable, qv - 0.2, which reflects the presence 
of significant local compression A; = AV under relaxation. Let us also note that in all our 
cluster calculations the total cluster charge qcl tums out to be quite small, being lower by 
an order of magnitude than 9. It illustrates a high degree of screening of impurity charges 
by their nearest neighbours, which was first noted by Dederichs and co-workers [lo, 111. 
On the other hand, in the SSA or ECM we have 4.1 qi. thus the screening and CTE are 
disregarded. Tables 1 and 2 show that this neglect can have a significant effect on the 
resulting Q and V, values. 

Let us now discuss possible contributions to Q or V, of LRE for more distant host atoms, 
with R > RI being disregarded in our calculations. Local dilations A(R) = (S2:'- S2h)/Q, 

for them decrease rather slowly with R. For example, in the employed estimate of U R ,  
values of As = A(Rs)  for sequential impurity shells s = 0, 1, 2, 3, 4, 5'and 6, are (in 
per cent) -7, -1, -1, -0.4, 0.4, 0.4 and -0.1, respectively. However. LE for these 
distant atoms probably have little effect on total energies. First, our cluster calculations 
with and without LRE for eight nearest host atoms (illustrated by lines 1 and 2 in table 1) 
have shown that these LRE make a small (about 16%) contribution to the total relaxation 
energy Q,j = Q(S2:') - Q(Q),  which reflects, in particular, a quadratic dependence of 
Q d  on AR at the small AR considered. Second, the elaborate treatment of an analogous 
shell convergence problem made by Drittler and co-workers [lo] for the V impurity in Cu 
has shown that the effects of self-consistency of electronic potentials (in the Lloyd formula 
(1~2)) on Q are noticeable only for the first shell s = 1 and are negligible for higher s, even 
though the perturbations of electronic states are of quite long range. Similarly, one may 
expect that local dilations of distant atoms will result only in minor variations of electronic 
states without significant changes in Q, which is also illustrated by a comparison of lines 1 
and 2 in table 1. 

As mentioned in section 2, for the relaxed lattice, values of Q and V, presented in 
tables 1 and 2 (and called for brevity 'electronic' terms, Q, and can be considered 
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as final ones which can be directly compared with experimental estimates: Q = Q,", 
& = vile,'. At the same time, for the unrelaxed lattice, the total calculated Q and V;: 
should also include deformational terms describing contributions of L E :  Q = Q"," + Qd, 
& = yy + yd. From physical considerations, the relaxation should lower energy, i.e. 
the deformational term Qd should he negative. Therefore, if the approximations used 
are reasonable, the electronic terms Q, should obey the inequality Qr' c For the 
interaction constants V, and VZ we can anticipate a similar inequality, I$ c 67, since in 
the non-additive deformational contributions to (5) for the unrelaxed lattice (corresponding to 
the 'overlapping' of surroundings of neighbouring impurities) a predominance of repulsion 
can be expected (see, for example, the estimates of V;: in [E]). Table 1 shows that the 
inequality QF' i QF holds for the fully self-consistent LMTO approach, but that it is 
drastically violated in the DD-LMTO approach, which ignores variations of width and form 
of electronic bands under solution. This violation may illustrate a possible unreliability of 
approaches of the tight-binding type in calculations of mixing energies Q .  At the same 
time, for interaction constants & analogous inequalities Y? < V:: are fulfilled in both 
LMTO and DD-LMTO calculations (in particular, at Q R  = S2h the latter yield V y  N 25, 
and V;.. N 32meV), and differences in V;: calculated with both methods are usually not 
large, particularly for the relaxed lattice. It may illustrate that the interaction constants & 
are much less sensitive than Q to the approximations of calculations, in particular to using 
DD-LMTO instead of LMTO. It agrees with similar conclusions of Sluiter and Turchi [2] as 
well as with the considerations in section 2. 

As mentioned above, if calculations of both electronic and deformational terms, Qe3 
&,e and Qd, yd, were exact, the resulting Q or Vi values calculated using a relaxed or an 
unrelaxed lattice, Q" = QF1 and Q"" = Q:" + Qd, or y"' = yz' and yiUN = yF + yd. 
should coincide with each other. If we employ for Q, and se the LMTO values in tables 1 
and 2, and for Q d  and yd. the mentioned above estimates QGK and yd.', we see that both 
the equations Q"' = Qm and are poorly satisfied: deformational contributions 
appear to be too large. However, if we suppose that the phenomenological estimates [12- 
151 neglecting not-nearest-neighbour Kanzaki forces do actually overestimate deformational 
terms by about a common factor I/@ > 1, Qd N O1Qd,K, V: N uydfK, then at 01 N 0.5 we 
obtain for Q"", V y  and V;m values (in meV) 120, 5,  and -15, respectively, which are 
close to the 'relaxed' values 120, 7 and -17 in tables 1 and 2. 

To discuss possible grounds for the overestimation of Qd and yd in the approximation 
neglecting not-nearest-neighbour Kanzaki forces F(R) ,  let us write the conventional 
expressions relating F(R) to the crystal energy H, the concentrational dilation coefficient 
ug = dlna/dx (a being the lattice constant) and deformational contributions Qd and 
yd [14,15]: 
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= 

1 H = He + F(R)uR + - A,p(R - R')U;U{~ 
R R.R' 

Here He describes the energy of an alloy with impurities in the undistorted host crystal 
lattice, U: is the 01 component of the host atom displacement UR at distance R from the 
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impurity, and A,@) is the dynamic matrix: E is the bulk modulus, s is the number of the 
impurity shell that includes lattice vectors R,, N is the total atom number, and eik are 
the frequency and the polarization vector for the phonon of branch A with quasimomentum 
IC in the host metal, M is the host atom mass, the integration goes over the Brillouin zone, 
and F(A) = C,F(R) exp(iRR) is the Fourier component of F(R).  The quantities Vd(R) 
in (16~)  are related to Qd and V; by Qd,= ?jVd(0), V; = Vd(Ri) [14,15]. 

It seems natural to suppose that Kanzaki forces F(R)  in cubic metals are approximately 
central, i.e. F(RJ Y f,Rs/R:, and the quantities fs making the main contributions to 
(16) have the same sign. Then one may expect that neglecting not-nearest contributions 
with s > 2 in (16) (at a given experimental u g )  should overestimate Vd values: due to 
strong oscillations of terms - f,f,;exp[ik(R, - &)I with s # s’ in sums over s, R, and 
s‘, R: in (16c), their contribution in the quantities Vd is actually suppressed, while for the 
quantity ug - & such suppression is absent. Therefore, approximating the true equation 
(16b) with ‘truncated’ relations, ug - fi and fs = 0 for s 2 2, we evidently overestimate 
Vd(R). If we suppose that for R equal to 0, RI and Rz in (16c) this overestimation has a 
similar scale N l /a,  we obtain estimates Qd Y 

We note that in our calculations of QF’ and V,”’ we used values of local distortions UR 

found phenomenologically, neglecting not-nearest Kanzaki forces, while for estimates of Q d  
and Vd we suppose the latter approximation to be quantitatively unreliable. However, one 
may expect that for the quantities ER linear in fs the fit employed of ug to its experimental 
value should absorb a significant part of the errors connected with neglect of not-nearest fs. 
Employing more consistent estimates of U R  may then not significantly change our results 
for QF1 and V:’, though this point, of course. needs further examination. 

In the comparison of our calculated value of the solution energy Q cz 0.12eV with 
the experimental values given in final column of table 1, we should consider that this 
value is lower by a factor of about 5-10 than typical Q values for the transition metal 
alloys [lo]. Thus various approximations of the calculations may significantly affect the 
result. In particular, we neglect charge and potential non-sphericity, as well as the higher 
angular momenta E 3 contributions to the Green function, while for the vanadium solution 
energy in FCC copper, for example, these effects were found to be important [IO]. Keeping 
this in mind, we can consider the agreement of our calculated Q with experiments to be 
quite reasonable. As for the configurational interactions Vj, we are not aware of their 
experimental estimates for Ti-V alloys. However, we can compare our estimates of Vj with 
the TBA-CPA calculations of Sluiter and Turchi [2]. who found the following for the dilute 
lil-xVx alloys (in meV): VI N -6, V, 2: -8 (and Q N 180). Therefore, the results of the 
two calculations of Vj agree only in the order of magnitude (being rather small, though), 
but disagree in meaningful figures. A more detailed comparison of our results with those 
of [Z] is hampered by the number of semi-phenomenological approximations used in 121: 
the TBA with a volume-dependent Slater-Koster pammetrization, neglect of self-consistency 
of electronic potentids, non-diagonal disorder, LE, etc. Thus the disagreement mentioned 
may characterize a scale of errors brought about by these approximations (and possibly also 
by the atomic sphere approximations of the present work) in calculations of V. 

To conclude this section, we comment upon the LRE Contributions to Q for impurities 
in other dilute alloys. These points were discussed, in particular, by Drittler and co- 
workers [lo] who suggested that disagreements with experiments in their calculated Q 
for some systems (for example, for Cr and Mn impurities in Cu) may be due to neglecting 
LRE. Our results for the Til,V, alloys seem to show that the phenomenological approach 
of [ 12-15], generally, can be used for semi-quantitative estimates of Qd and yd, even though 
it somewhat overestimates their values, For the interaction constants vd such estimates have 

Vj N ayd.’ employed above. 
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been presented for 24 cubic host metals in [ 151. In table 4 we present analogous estimates for 
the deformational contribution Qd to the solution energy. It is related to the concentrational 
dilation coefficient uo = dlna/dx as 114,151 
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The values of WO in table 4 were calculated using the same methods and data as those 
in [15]. 

Table 4. Values of the parameter WO in (17) for the deformational contribution Q d  to the solution 
energy Q in dilute alloys. 

BCC host Li Na K Rb Cs Ba Ti z r v  
n (A) 3.50 4.28 5.31 5*69 6.12 5.02 3.31 3.61 3.03 
WO (eV) 1.87 1.97 2.40 2.90 2.00 4.27 26.1 29.3 18.8 

~ c h o ~ t  Nb Ta Cr MO W Fe 
a CA) 3.29 3.30 2.88 3.14 3.16 2.86 
WO (ev) 26.6 32.9 12.3 28.9 34.1 12.9 

Fcchost Ca SI Al Ni Pd pt Cu Ag Au 
a (A) 5.58 6.09 4.04 3S2 ~3.88 3.92 3.61 4.08 , 4.07 
WO (eV) 1.86 1.94 3.70 8.63 12.0 21.4 6.44 7.31 14.6 

The dilation coefficient uo in (17) can be estimated using the Wegard law (which for 
many alloys is even obeyed quantitatively). It implies uo 2: (ai -ah)/ah N (Qi - 
where the index h or i corresponds to the pure host or solute metal. Table 4 and equation (17) 
show that values of Qd do not usually exceed 0.1-0.2eV (also keeping in mind a probable 
overestimate of Qd with this estimate). Thus LRE can significantly aljfect values of Q only for 
alloys with a large mismatch of atomic sizes and at small valency difference AZ = Zi - zh, 
when the ‘electronic’ contribution Qe is small, as it is for the Ti-V system. For the case 
of Cr and Mn impurities in Cu discussed in [lo] the valency difference AZ is significant, 
while the atomic volume difference is quite small, 14 - Qhl/Qh - 2-3%, and the estimate 
(17) gives I Qdl < 1 meV. Therefore, LRE can hardly be important for Q in these systems. 

4. Resulls of calculations for FCC Ni~-zAlz alloys 

Discussing the Ni-A1 system, we first note that LRE for this system are much less important 
than for the Ti-V system, even though the values of concentrational dilation coefficients 
ug = dlna/dx are similar: uo N 0.051 for the FCC Nil-xAlz alloys [20], and uo N -0.078 
for the Til-,V, alloys. The relative insignificance of LRE for Ni-A1 alloys is due to two 
reasons. 

First, local atomic displacements U R  near the impurity in the close-packed FCC lattice are 
much lower than those in the BCC lattice. In paaicular, phenomenological estimates [14,15] 
yield, for displacements uR = U, of Ni atoms near the Al impurity, U; = = 0.026 and 
U; = -0.01, while the FCC lattice constant is Q N a ~ i  = 6.66, and the local dilation 
As = (Q, - Qh)/Qh is 2.3, 0.6 and 0.2% for shell s = 0, 1 and 2, respectively. At the 
same time, for the BCC Tit,V, alloys with a Y ax = 6.75 we have, with similar estimates, 
U; = U: = U; = -0.11, uf = 0.07 and U; = = -0.04, and values of As mentioned in 
section 3 exceed those for the Ni-A1 system by several times. 
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Second, tables 5 and 6 show that the ‘electronic’ contributions to Q and Vi in Ni-A1 
alloys are much higher than those in Ti-V alloys (which reflects a stronger bonding in the 
Ni-A1 system), and they considerably exceed deformational terms Qd and yd. For example, 
using estimates from table 4 and [15] for Q d  and Yd in Nil-xAlz, we obtain (in mev), 
Qd N 22, V$ N -12 and V l  LT -3.3, which is much smaller than the electronic terms in 
tables 5 and 6. Therefore, below we do not discuss L E  for the Ni-AI system, and present 
only results for the ‘relaxed‘ lattice with the phenomenologically estimated atomic volumes 
S2:; = 75.6 and S2,(Ni) = 74.3, being close to the host volume ah = Chi = 73.9. 

Table 5. Characteristics of a single AI impurity in FCC Ni. . 
Method Charges 4 (a) Contributions to Q (eV) Total Q (eV) 

AI Ni Cluster AEb A E g  12AEE AEc Calc. Mp. 

cc -0.42 0.04 0.05 -7.12 0.92 ‘5.11 -0.70 -1.79 -1.6[181 
SSA -0.26 - -0.26 -4.85 2.88 - - -1.97 

, ~. LMm 

DD-LM~U cc -0.64 0.06 0.07 -11.81 3.43 8.87 :1.60 -1.11 
SSA -0.40 - -0.40 -7.58 6.04 - - -1.54 

Table 6. Atomic charges and interactions Vi = V(R;) for clusten including two AI atoms in 
FE Ni. Contributions to V, and total Vi are measured in meV. 

Contrib. Lo V; Total Vi 
~. 

Charges q (au) Method R. =R; AIAI 

AI Nil Ni? Ni- Nia Cluster VL V,, Vr cc ECM 

DD-LMIO (1,l.O) -0.56 0.12 0.06 0.05 0.05 0.09’ 1006 -1612 852 187 235 
cc (2.0.0) -0.64 0.13 0.05 0.06 - 0.09 325 -125 -250 -49 33 

Considering the characteristics of a single AI impurity presented in table 5, we note that 
its charge transfer q to host atoms is significant, and close to that for the ordered Ni3AI 
compound where q N 0.5 [25]. Tables 1 and 5 also show that single-site approximations 
underestimate values of q. The electronic structure of both Al and Ni atoms found in the 
self-consistent cluster calculation noticeably differs from that calculated in SSA, and partial 
contributions A&, A& apd A& to the solution energy Q found in the CC and SSA differ 
greatly from each other. In particular, significant terms AE: and A& are absent in SSA. 
However, the difference in total Q values calculated in cc and SSA turns out to be small, 
thus errors of SSA due to the neglect of intersite interactions seem to cancel each other to a 
considerable extent. Such a cancellation (which has been discussed by a number of authors, 
see for example [8] and references therein) probably reflects variational properties of energy 
in the density functional approach. Note, however, that employing the more consistent 
LMTO-CC instead of the LMTO-SSA method results in lowering the disagreement between 
calculated and observed values of Q by a factor of about two, though this improvement 
may be partly accidental. 

We now discuss an application to the same impurity problems of the abovementioned 
DD-LMTO approach. Table 5 shows that it results in an overestimation of q and an 
underestimation of Q in the cluster calculation by about 30%. However, a comparison 
of tables 1 and 5 shows that errors brought about by the DD-LMTO approach in Q values for 
AI in Ni are much lower than those for V in BCC 3. The latter can be understood if one 
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compares LMTO parameters for the Al impurity and Ni host atoms in table 3. We see that 
for s and p states (which include about 90% of the total number of occupied states for A1 in 
Ni [23]) values of AI and M for host and impurity atoms are similar. Therefore, employing 
the DD-LMTO approximation, A:' n. AY v;" N fiNi, brings in significant errors only for a 
small part of the impurity electrons, unlike the V in Ti case where impurity electrons mainly 
fill just d states. 

As mentioned in section 3, the interaction constants V;: seem to be less sensitive to 
approximations of calculations than the mixing energy Q. For example, tables 1 and 2 show 
that employing DD-LMTO instead of full LMTO for V impurities in 'Ii changes the calculated 
Q value by a factor of -5 (which implies inapplicability of the DD-LMTO approach to this 
problem), while V;: values change only by 20-50%. Thus for the case of an A1 impurity in 
Ni, where analogous changes in Q are only about 30%, one may expect that the difference 
in DD-LMTO and full LMTO results for V;: should be significantly lower than that for V in 
Ti, and may not exceed 5-10%. In addition to that, in the course of this work we made 
DD-LMTO calculations, while cluster computations of V;: are time consuming. Therefore, 
in table 6 we present only V;: values calculated with the DD-LMTO. We hope that they are 
sufficiently close to the full MO results, and plan to examine them elsewhere. 

A comparison of V;: values found using the cluster calculations (CC) and the SA-type 
'embedded cluster method' (Em) enables us to appreciate the importance of CTE for the 
interaction constants vi. A comparison of tables 5 and 6 (as well as tables 1 and 2) shows 
that in V, are more pronounced than in the solution energy Q. This may be connected 
with a greater importance of the intersite Coulomb conaibution Vc for total V;: as compared 
with that of the analogous term A E c  for Q. The ECM seems to overestimate the VI value 
by about 30%. while for Vz the ECM and CC results even differ in sign. 
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Table 7. Estimates of interactions Vj = V(@) (in meV) for dilute Ni-AI alloys. 

.~ , ,  , 

V ~ = V ( l . I . O )  204 290 r 2 5 0  235 187 252 145 65 
v2 I V(2.0 .0)  10 - 2 7 0  33 4 9  14 -18 -21 

In table 7 we compare the results of various theoretical and experimental estimates of fi 
for dilute Nil,Alx alloys (the values in the thud column are taken from figure 7 of [5]).  For 
the first constant VI various theoretical estimates are, generally, close to each other, though 
in our cluster calculation VI is somewhat lower than in others. For the second constant 
V, our cc value is negative, unlike in other calculations. We mention in this connection 
that for higher concentrations x the negative E values promote LIZ-type ordering, which 
is actually observed in the Ni,,Al, alloys at x N 0.25. 

The experimental estimates of V;: in table 7 reveal a large scatter, which prevents 
their detailed comparison with calculations. One may only note that the latest 
measurements [19,20] seem to show a tendency to lower values of V I  and negative values 
of V,, in qualitative agreement with our cluster calculations. 

5. Conclusions 

Despite the number of approximations made in the calculations presented in this paper, 
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the results obtained appear to enable us to make several qualitative conclusions regarding 
the magnitudes, and significance of the lattice relaxation and chargetransfer effects on the 
mixing energies Q and the configurational interactions vi. 

First, our results substantiate previous remarks 19-11,151 that LRE can significantly 
affect Q and 6 values in substitutional alloys, particularly when the components have 
a significant mismatch of atomic sizes. At the same time, our microscopic estimates 
for BCC li-V alloys have shown that the conventional phenomenological estimates of 
deformational contributions Qd and yd, neglecting not-nearest-neighbour Kanzaki forces, 
seem to noticeably overestimate the magnitudes of Qd and Vi“. We have also presented 
qualitative considerations regarding the possible connection of this overestimation with the 
neglect of distant Kanzaki forces. 

The conclusion regarding the probable overestimation of deformational terms yd = 
vd(R)  in the phenomenological estimates may be even more important for the interstitial 
alloys, where these terms (being quite strong and of long range) are usually supposed to 
dominate the interstitial atom interactions [14,26-301. We mention in this connection the 
known estimate of Vd for the NbH,-type alloys suggested by Homer and Wagner 1261 and 
used by a number of authors [27-301. In analogy with the mentioned truncation of Kanzaki 
forces at nearest neighbours, Homer and Wagner supposed that the forces fs (in our notation) 
between H and Nb atoms to be non-zero only in two shells of the H impurity and estimated 
fi and fi using experimental data about the H-induced distortions of the BCC lattice of Nb. 
In particular, for the ratio r = fi/fi they obtained r N 13/35 ‘v 0.4. A significant value 
for this r may hint that the quantities fs actually decrease with s rather slowly, thus sums 
over s in (16b) and (16c) can include many terms of similar order. As was discussed in 
section 3, we can then expect an overestimation of vd in Horner-Wagner-type estimates. 
Therefore, the magnitudes of deformational interactions & found in [26-30] and in similar 
estimates in [14] may be significantly exaggerated. 

The latter can help, in particular, to resolve a long-discussed problem in interstitial 
alloy physics: the so-called ‘blocking’ effect in NbHz-type (and many other) alloys. 
Interstitial sites near each impurity atom (2-3 shells for the NbH, type alloys) cannot be 
occupied by other impurities [26-281. Microscopic estimates [28] for total H-H interactions 
Vtm = Kd + vi. in these hydrides (in which deformational terms were estimated 
according to [26] and ‘electronic’ terms vi. were estimated using a number of plausible 
models) failed to explain the blocking effect: the deformational attraction for the first three 
shells was too strong, (-Vp) 2 (1-3)ld K, to obtain ‘blocking’ values yHH 2 i‘, - 500K 
at reasonable V e  (see table 2 in 1281). Therefore, an abnormally strong anharmonic repulsion 
was invoked to explain the blocking effect [28]. However, if the Horner-Wagner vd should 
actually be lowered by several times, then the repulsive terms presented in [28] can be 
quite sufficient to obtain blocking values Vi >> T, at i = 1 and 2, as well as the value 
6 - 8OOK estimated from thermodynamical data in [30]. 

Therefore, the overestimation of deformational interactions yd in phenomenological 
estimates neglecting distant Kanzaki forces may w u r  for b t h  substitutional and interstitial 
alloys, and then one can naturally explain blocking effects observed in a number of interstitial 
alloys. In this connection, first-principles estimates of the R dependence of Kanzaki forces 
F(R) seem to be highly desirable. 

The second main conclusion of this work concerns the charge transfer effect on mixing 
energies and configurational interactions in alloys.  as mentioned above, in a number of 
recent works these effects are supposed to be insignificant 11-3,8]. Our results for the Ni- 
AI alloys show that for certain quantities, in particular for the second constant Vz in these 
alloys, taking into account CTE is of crucial importance, while these quantities can determine 
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even the type of ordering. This work also shows that the cluster methods employed here and 
in [9-111 enable us to describe cr~ in dilute alloys both consistently and relatively simply. 
An extension of these methods to the ordered phases with a narrow homogeneity region 
(i.e. almost stoichiometric phases) seems to be straightforward. Therefore, these cluster 
methods can provide an effective tool for consistent calculations of thermodynamics and 
phase equilibria for alloy phases with narrow homogeneity regions, which are characteristic 
for many intermetallic systems. 
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